Ela New Lower Solution Bounds for the Continuous Algebraic Riccati Equation

نویسندگان

  • JUAN ZHANG
  • JIANZHOU LIU
  • Juan Zhang
  • Jianzhou Liu
چکیده

In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation (CARE) and applying some matrix inequalities, a new lower bounds solution of the CARE is proposed. Finally, corresponding numerical examples are provided to illustrate the effectiveness of the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New lower solution bounds for the continuous algebraic Riccati equation

In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation (CARE) and applying some matrix inequalities, a new lower bounds solution of the CARE is proposed. Finally, corresponding numerical examples are provided to illustrate the effectiveness of the results.

متن کامل

Ela a New Upper Bound for the Eigenvalues of the Continuous Algebraic Riccati Equation

By using majorization inequalities, we propose a new upper bound for summations of eigenvalues (including the trace) of the solution of the continuous algebraic Riccati equation. The bound extends some of the previous results under certain conditions. Finally, we give a numerical example to illustrate the effectiveness of our results.

متن کامل

Lower bounds on the solution of coupled algebraic Riccati equation

Upper bounds for eigenvalues of a solution to continuous time coupled algebraic Riccati equation (CCARE) and discrete time coupled algebraic Riccati equation (DCARE) are developed as special cases of bounds for the uni...ed coupled algebraic Riccati equation (UCARE). They include bounds of the maximal eigenvalues, the sums of the eigenvalues and the trace.

متن کامل

Matrix Bounds for the Solution of the Continuous Algebraic Riccati Equation

Juan Zhang and Jianzhou Liu Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China Correspondence should be addressed to Jianzhou Liu, [email protected] Received 19 December 2009; Revised 22 June 2010; Accepted 16 August 2010 Academic Editor: John Burns Copyright q 2010 J. Zhang and J. Liu. This is an open access article distributed under the Crea...

متن کامل

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011